Nomographs for the solution of beam-column problems, Lehigh University, (August 1961) Reprint No. 197 ((62-3)

Ojalvo, M.; Fukumoto, Y.
1961

Find more at https://preserve.lib.lehigh.edu/

This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
WELDED CONTINUOUS FRAMES AND THEIR COMPONENTS

NOMOGRAPHS FOR THE SOLUTION OF BEAM-COLUMN PROBLEMS

by

Morris Ojalvo and Yuhshi Fukumoto

This work has been carried out as a part of an investigation sponsored jointly by the Welding Research Council and the Department of the Navy with funds furnished by the following:

American Institute of Steel Construction
American Iron and Steel Institute
Office of Naval Research (Contract Nonr.610(03))
Bureau of Ships
Bureau of Yards and Docks

Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

Fritz Engineering Laboratory
Department of Civil Engineering
Lehigh University
Bethlehem, Pennsylvania

July, 1961

Fritz Engineering Laboratory Report No. 278.5
SYNOPSIS

The principal purpose of this paper is to present nomographs and charts which are useful in the solution of a wide variety of beam-column problems.

Methods are presented for the determination of the load-deflection behavior of restrained beam-columns of constant cross section. The restraint may be elastic or elastic-plastic; failure is assumed to take place by excessive bending in the plane of the applied moments. Several example problems illustrate the application of the charts.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
</tr>
<tr>
<td>II. DEVELOPMENT OF THE NOMOGRAPHS</td>
</tr>
<tr>
<td>II.1 Construction of the Column Deflection Curves</td>
</tr>
<tr>
<td>II.2 Development of the Nomographs</td>
</tr>
<tr>
<td>(a) Columns with equal end moments and equal end restraints</td>
</tr>
<tr>
<td>(b) Columns with one end pinned</td>
</tr>
<tr>
<td>III. USE OF THE NOMOGRAPHS</td>
</tr>
<tr>
<td>III.1 Restrained Columns with Equal End Moments and Equal End Restraints</td>
</tr>
<tr>
<td>(a) Determination of the maximum length L</td>
</tr>
<tr>
<td>(b) Determination of the maximum eccentricity e</td>
</tr>
<tr>
<td>III.2 Restrained Columns with One End Pinned</td>
</tr>
<tr>
<td>(a) Determination of the maximum length L</td>
</tr>
<tr>
<td>(b) Determination of the maximum eccentricity e</td>
</tr>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>III.3 Unrestrained Columns</td>
</tr>
<tr>
<td>(a) Unrestrained columns with unequal end moments</td>
</tr>
<tr>
<td>(b) Unrestrained columns with moment at one end</td>
</tr>
<tr>
<td>IV. SUMMARY</td>
</tr>
<tr>
<td>V. ACKNOWLEDGMENTS</td>
</tr>
<tr>
<td>VI. NOMENCLATURE</td>
</tr>
<tr>
<td>VII. APPENDICES</td>
</tr>
<tr>
<td>VII.1 M-θ-L Nomographs</td>
</tr>
<tr>
<td>VII.2 M-θ Curves</td>
</tr>
<tr>
<td>VIII. FIGURES</td>
</tr>
<tr>
<td>IX. REFERENCES</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Columns in framed structures are connected at their ends to beams and other columns. These elements provide translational and rotational restraints to the columns.

The columns deform from the very beginning of loading due to the bending moments transmitted from the beams through the rigid beam-to-column connections. When the axial load in a column becomes large enough, the sign of the bending moments at the column ends may be reversed, and the beams take over the role of restraining the column and thereby they limit column deflection. It is thus seen that the behavior of restrained columns must be studied in order to arrive at a more accurate estimate of the strength of columns in continuous structures than would be obtained by assuming pinned ends.

The ensuing report will be concerned with the determination of the behavior of the restrained columns which fail by excessive bending about one of the principal axes of the cross section. The bending moment, the restraint, and all the deformations occur in one and the same plane. It is
assumed that the column ends do not translate. The method presented here is based on theoretical work developed in Refs. 1 and 2. This research systematized the approach used by Chwalla(3) and extended its applicability to cases where the rotational restraints at the ends of the column are not elastic. The results of the research are presented in the form of nomographic charts which are given in the Appendix.

The nomographs in the Appendix permit the solution of the following problems for as-rolled wide-flange steel beam-columns bent in the plane of the web:

1) Beam-columns with symmetric end moments and end restraints.
2) Beam-columns with one end pinned.
3) Pinned-end columns under any combination of end moments.

Example problems are worked out with the aid of the charts. Moment-versus-end rotation curves for wide-flange sections are also given in the Appendix. These M-θ curves are presented for strong axis as well as weak axis bending.
II. DEVELOPMENT OF THE NOMOGRAPHS

II.1 Construction of the Column Deflection Curves

The most general case of the beam-column problem without translating ends is shown in Fig. 1(a). The compressive load P is applied to each end with different eccentricities \(e_A \) and \(e_B \). In addition to the applied moments \(P \cdot e_A \) and \(P \cdot e_B \) there are restraining moments at the ends. These moments depend on the rotation characteristics of the supports. These moments are denoted by the symbols \(f_A(\theta'_A) \) and \(f_B(\theta'_B) \) to indicate that they are functions of the end rotations.

A member such as column AB in Fig. 1(a) may be considered as a segment of a Column Deflection Curve \(1,2,3 \). A Column Deflection Curve is defined as the shape that a compressed member would take if held in a bent configuration by axial loads applied to the ends. For the column deflection curve shown in Fig. 1(b) the following equations are obtained from the geometry of the deflection curve:

\[
\theta'_A = \theta_A - \alpha \\
\theta'_B = \theta_B + \alpha \\
\alpha = \frac{y_A - y_B}{L}
\]
Values for θ_A^l, θ_B^l, α, y_A, y_B, e_A, and e_B are positive when they are shown as in Fig. 1(a) and (b). The bending is positive when the upper fibers of the column in Fig. 1(b) are in tension.

It is apparent from the description of the column deflection curve that an infinite number of such curves are possible for a given column cross section, stress-strain diagram, and average compressive stress. Each of these may be conveniently identified by θ_0 or y_m (where θ_0 is a given initial slope and y_m is a deflection at the midspan of the column deflection curve). The column deflection curves have been constructed for given axial load ratios P/P_y and initial slopes θ_0 by a numerical integration of the moment-curvature curves. The details of the numerical integration process, as well as the various theoretical implications associated with the column deflection curves are given in Refs. 1 and 2.
The moment curvature relationships used in the construction of the column deflection curves were taken from the M-\(\Phi\) curves developed in Ref. 4. The bases for these curves are an elastic-fully plastic stress-strain diagram (with the yield stress \(\sigma_y = 33\) ksi and the modulus of elasticity \(E = 30,000\) ksi), a linearly varying symmetric residual stress pattern (with the maximum compressive residual stress of \(0.3\\sigma_y\) occurring at the flange tips), and a typical wide-flange shape (8WF31).

II.2 Development of the Nomographs

(a) Columns with Equal End Moments and Equal End Restraints

Figure 2(a) shows a symmetrically loaded and symmetrically restrained column, while Fig. 2(b) shows the column deflection curve that includes the column of Fig. 2(a). The segment of the column deflection curve A'-B' corresponds to the restrained column A-B. At point A or B in Fig. 2(a) the equality of internal and external moments requires that

\[P \cdot y = f(\Theta_A^I) - p.e = M_A^I \quad (7) \]

Because of the symmetry, the end rotation of the column will
be equal to the slope θ' at A' or B' on the column deflection curve.

Figure 3 shows how the information from one column deflection curve is plotted for the nomograph. This nomograph correlates the slope θ', the moment $M = P \cdot y$, and the length L of the column segment at any point B' on the column deflection curve shown in the upper right hand portion of Fig. 3. The upper nomographic curve shows the $M-\theta'$ relationship, and the lower curve represents the $L - \theta'$ curve. The moments, slopes and lengths for two typical points B_1' and B_2' are shown by the dashed lines. Because of symmetry only one half the column length is plotted in the lower curve. The complete nomograph for a particular value of P/P_y is constructed from several column deflection curves (identified by different values of θ_o) in the same manner, and these nomographs are shown in Appendix VII.1.

The nomographs for the several values of P/P_y are based on the properties of the 8WF31 section, and thus they are strictly applicable to this section only. They have been non-dimensionalized however, so that use can be made of them for all rolled wide-flange sections normally used as columns. When the nomograph is used for sections other than the 8WF31,
the error will be small because the distribution of the areas for all wide-flange column sections about the neutral axis is similar. In fact, the results based on an 8WF31 section nearly always will give conservative values for the strength of a rolled-wide-flange column because this section has one of the more unfavorable thrust-moment-curvature relationships of the wide-flange column sections rolled. (5)

(b) Column with One End Pinned

The pinned end of the column must always correspond to the origin of the column deflection curve. In Fig. 4a such a column is shown. One end of the column is pinned (A) and the other end, to which also the external moment is applied, is restrained (B). The corresponding segment of the column deflection curve is given in Fig. 4b. The way in which the nomograph is constructed may best be understood by a consideration of Fig. 5. This figure shows how the information from a single column deflection curve is organized. In the upper section the internal moment at a point B' is plotted against the value of θ'. Coordinates of typical points B' are shown in the upper (M-θ' curves) and lower portion (L-θ' curves) of the nomographs.

More details on the nomographs, including their use
for finding various relationships (M-\(\Theta \), L/r-\(\Theta \), etc.) are dis-
cussed in Refs. 1 and 2. The nomographs in Appendix VII.1 are for
the symmetrical and the pinned-end loading cases discussed
above. They are applicable for strong-axis bending only.
Nomographs are given for both loading cases for P = 0.12 P_y,
0.2 P_y, 0.3 P_y, 0.4 P_y and 0.6 P_y. The curves are plotted
on a rectangular grid-system, thus permitting the solutions
of problems graphically by the use of transparent overlays.
III. USE OF THE NOMOGRAPHS

In the following section of this report the use of the information contained in the nomographic charts is illustrated by several example problems.

III.1 Restrained Columns with Equal End Moments and Equal End Restraints

(a) Determination of the maximum length L

Find the maximum length L of span A-B (Fig. 6). Consider the cases when $s/r = 56.5$ and 113.

Given:

1. The rolled steel wide-flange column A-B of Fig. 6 with symmetrical restraining spans A'-A and B'-B.
2. $P/P_y = 0.3$
3. $\sigma_{rc} = 0.3 \sigma_y$
4. $M_p = 1.11 M_y$
5. $e = e_A = e_B = 2.88 r$
6. $d/r = 2.3$ (approximately constant for all standard rolled steel column section)
7. $E = 30 \times 10^3$ ksi, $\sigma_y = 33$ ksi
Solution: The restraining functions at A and B are approximated according to simple plastic theory, that is, the restraining beams are assumed to remain entirely elastic up to the formation of a plastic hinge.

\[\theta_A = \frac{M_A s}{3EI} \quad \text{for } \theta_A \ll \theta_p \]

For \(\theta_A = \theta_p, M_A = M_p \)

\[\theta_p = \frac{1.11 M_y s}{3EI} \quad M_y = \sigma_y \cdot I / d \]

Then \(\theta_p = 0.00036 \text{ s/r} \)

and thus

\[f(\theta_A) = \frac{M_p}{\theta_p} \cdot \theta = 3080(r/s)M_y \theta, \text{ for } \theta \leq 0.00036 \text{ s/r} \]

\[f(\theta_A) = M_p, \text{ for } \theta \geq 0.00036 \text{ s/r}. \]

The external moments at A and B, \(M_e = f(\theta) - P_e \), acting on column A-B must equal the internal moments at these points. In nondimensional terms:

\[\frac{M}{M_y} = 3080(r/s)\theta - 1.0 \quad \text{when } \theta \leq 0.00036 \text{ s/r} \quad (a) \]

\[\frac{M}{M_y} = 1.11 - 1.0 = 0.11 \quad \text{when } \theta \geq 0.00036 \text{ s/r} \quad (b) \]

The expression given by Eqs. (a) and (b) is plotted in
the upper portion of the appropriate nomograph of Appendix VII.1 (as shown for the case of $P/P_y = 0.3$ in Fig. 7), and the intersections with the $M-\theta$ curves of the θ_1^o, θ_2^o, ..., θ_n^o column deflection curves are carried down to the lower portion of the nomograph to give lengths $L_1^o/2r$, $L_2^o/2r$, ..., $L_n^o/2r$ representing equilibrium configurations of the column. By connecting these points in the lower portion one obtains the relationship between the slenderness ratio L/r and the end rotation at A and B for each equilibrium configuration.

From the lower portion of the nomograph the maximum value of L/r consistent with equilibrium for each value of s/r is indicated by an arrow in the table below.

<table>
<thead>
<tr>
<th>s/r</th>
<th>θ_1^o</th>
<th>$L/2r$</th>
<th>L/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.5</td>
<td>0.01</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>95</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>0.030</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>94</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>73</td>
<td>146</td>
</tr>
<tr>
<td>113</td>
<td>0.035</td>
<td>82.5</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>87.5</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>74.0</td>
<td>148</td>
</tr>
</tbody>
</table>

Answers: $(L/r)_{\text{max}} = 200$ for $s/r = 56.5$

$(L/r)_{\text{max}} = 175$ for $s/r = 113$
(b) Determination of the maximum eccentricity e of the problem in Fig. 8.

Given:
1. The rolled steel wide-flange column A-B of Fig. 8 with restraining spans A'-A and B'-B.
2. $P/P_y = 0.4$
3. $\sigma_{rc} = 0.3 \sigma_y$
4. $M_p = 1.11 M_y$
5. $d/r = 2.3$
6. $E = 30 \times 10^3$ ksi, $\sigma_y = 33$ ksi

Solution: The restraining functions at A and B (in accordance with the approximation of III.1(a)) are

$$f(\theta_A) = f(\theta_B) = f(\theta) = \begin{cases} 54.5 M_y \theta_A, \theta \leq 0.0204 \\ M_p, \theta > 0.0204 \end{cases}$$

A horizontal line in the lower portion of the nomograph is drawn at the specified slenderness ratio ($L/2r = 40$).

Intersections with the curves of the nomographs are carried up to the corresponding nomograph curves in the upper portion. By connecting these points in the upper portion one obtains the relationship between moment and rotations at A and B. This would be the $M-\theta$ curve for the corresponding unrestrained beam column.

From the nomograph
\[
\left(\frac{M}{M_y}\right)_{\text{max}} = -0.381 \text{ for } L/r = 80
\]

\[\theta = 0.0243\]

Note that \(\theta \geq 0.0204\), \(\therefore f(\theta) = M_p\)

From Eq. (4)

\[
\frac{P \cdot e}{M_y} = \frac{f(\theta)}{M_y} - \frac{M}{M_y}
\]

\[= 1.110 - (-0.381)\]

\[= 1.491 \text{ since } \theta = 0.0243 \geq 0.0204\]

\[e = \frac{1.491 M_y}{0.4 F_y} = \frac{1.491}{0.4} \cdot \frac{r}{d} \cdot 2r\]

\[= 3.24r\]

The maximum eccentricity is thus

\[e_{\text{max}} = 3.24r \text{ for } L/r = 80, \text{ and } s/r = 57.6\]

III.2 Restrained Columns with One End Pinned

(a) Determination of the maximum length \(L\)

Find the maximum length \(L\) of span A-B (Fig. 9). Consider the cases when \(s/r = 56.5\) and 113.

Given: (1) The rolled steel wide-flange column A-B of Fig. 9 with restraint span B-B'.
(2) \(P/P_y = 0.3 \)
(3) \(\sigma_{rc} = 0.3 \sigma_y \)
(4) \(M_p = 1.11 M_y \)
(5) \(e_B = 2.88 r \)
(6) \(d/r = 2.3 \)
(7) \(E = 30 \times 10^3 \) ksi, \(\sigma_y = 33 \) ksi

Solution: The restraining functions at B (in accordance with the approximation of III.1(a)) is given by:

\[
f(\Theta_B') = \begin{cases}
3080 (r/s) M_y \Theta'_B, & \Theta_B' \leq 0.00036 \text{ s/r} \\
M_p, & \Theta_B' > 0.00036 \text{ s/r}
\end{cases}
\]

The external moment, \(f(\Theta_B') - P e_B \) must be equal to the internal moment of the column at B. The equality when non-dimensionalized is:

\[
\frac{M}{M_y} = 3080 (r/s) \Theta_B' - 1.0 \text{ when } \Theta_B' \leq 0.00036 \text{ s/r} \quad (a)
\]
\[
\frac{M}{M_y} = 1.11 - 1.0 = 0.11 \text{ when } \Theta_B' > 0.00036 \text{ s/r} \quad (b)
\]

The non-dimensionalized function \(\frac{M}{M_y} \) is plotted in the upper portion of the appropriate nomograph of Appendix VII.1 (See Fig. 9). The intersections with \(\frac{M}{M_y} - \Theta' \) curve of the \(\Theta_0^1, \Theta_0^2, \Theta_0^3, \ldots \Theta_0^n \) column deflection curves are carried down
to give lengths L_1/r, L_2/r, L_3/r, ... L_n/r representing equilibrium configurations. By connecting these points in the lower portion one obtains the relationship between the slenderness ratios L/r and the end rotations at B for each equilibrium configuration. The construction of the L/r vs θ curve is shown in solid lines in Fig. 9 for $s/r = 56.5$.

From the lower portion of the nomograph the maximum value of L/r consistent with equilibrium is indicated by an arrow in the following table:

<table>
<thead>
<tr>
<th>s/r</th>
<th>θ_0</th>
<th>L/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.5</td>
<td>0.020</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>0.030</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>181</td>
</tr>
<tr>
<td>113</td>
<td>0.030</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>142</td>
</tr>
</tbody>
</table>

$(L/r)_{max} = 185$ for $s/r = 56.5$

$(L/r)_{max} = 168$ for $s/r = 113$

(b) Determination of the maximum eccentricity e

Find the maximum eccentricity e (Fig. 10).

Given: (1) The rolled steel wide-flange column A-B of Fig. 10 with restraining span B-B'.

(2) $P/P_y = 0.4$
Solution: The restraining function at B (in accordance with
the approximation of III.1(a));

\[f(\theta_B') = \begin{cases}
3080 \frac{r}{\text{s} \cdot \text{M}_y} \cdot \theta_B', & \theta_B' \leq 0.00036 \frac{\text{s}}{\text{r}} \\
\frac{\text{M}_p}{\text{M}_y}, & \theta_B' \geq 0.00036 \frac{\text{s}}{\text{r}}
\end{cases} \]

for \(s/r = 80 \)

\[f(\theta_B') = \begin{cases}
38.4 \frac{\text{M}_y}{\text{M}_p} \cdot \theta_B', & \theta_B' \leq 0.0288 \\
\frac{\text{M}_p}{\text{M}_y}, & \theta_B' \geq 0.0288
\end{cases} \]

A horizontal line in the lower portion of the nomograph
is drawn at the specified slenderness ratio \((L/r = 100) \). Inter-
sections with the curves of the nomograph \(P/P_y = 0.4 \) are
carried up to the corresponding nomograph curves in the upper
portion. By connecting these points in the upper portion one
obtains the relationship between the end moment and end rota-
tion at B for each equilibrium configuration. From Fig. 10
\((M/M_y)_{max} = -0.485 \) for \(L/r = 100 \).

\[\theta_B' = 0.0320 \geq 0.0288 \]

From the equation of equilibrium (Eq. (4))
\[\frac{P \cdot e}{M_y} = \frac{f(\Theta)}{M_y} - \frac{M}{M_y} \]
\[= 1.110 - (-0.485) \]
\[= 1.595 \]

\[e = \frac{1.595 M_y}{0.4 P_y} = \frac{1.595}{0.4 \cdot 2.3} \cdot 2r \]
\[e/r = 3.47 \]

The maximum eccentricity \(e_{\text{max}} = 3.47r \) for \(L/r = 100 \), and \(s/r = 80 \).

III.3 Unrestrained Columns

(a) Unrestrained columns with unequal end moments

Find the maximum length consistent with equilibrium of column A-B in Fig. 11.

Given:

1. The pin ended rolled steel, wide-flange column A-B of Fig. 11 with unequal end moments.
2. \(P/P_y = 0.3 \)
3. \(\sigma_{rc} = 0.3 \sigma_y \)
4. \(M_p = 1.11 M_y \)
5. \(M_A/M_y = 0.6 \)
6. \(M_B/M_y = -0.3 \)
7. \(\sigma_y = 33 \text{ ksi}, \ E = 30 \times 10^3 \text{ ksi} \)
The nomographs used for this case are the ones constructed for equal end moments and restraints.

Solution: A horizontal line is drawn in the upper portion of the diagram for \(M/M_y = -0.6 \) (Fig. 11). The intersections with the \(M-\Theta \) curves are carried down to the lower portion of the nomograph to give distances \(L_A \) on each column deflection curve. Similarly the interactions with the horizontal line \(M/M_y = +0.3 \) are carried down to give the \(L_B \) distance. In the following table the values of \(L_A \) and \(L_B \) are added for each column deflection curve to give the length of column A-B. An arrow indicates the maximum value of \(L \) consistent with equilibrium.

<table>
<thead>
<tr>
<th>(\Theta_0)</th>
<th>(L_B/r)</th>
<th>(L_A/r)</th>
<th>(L/r = \frac{L_A + L_B}{r})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.02</td>
<td>136</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.025</td>
<td>123</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.030</td>
<td>117</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.035</td>
<td>111</td>
<td>23</td>
<td>134</td>
</tr>
<tr>
<td>0.040</td>
<td>104.5</td>
<td>32</td>
<td>136.5 (arrow)</td>
</tr>
<tr>
<td>0.050</td>
<td>85</td>
<td>30</td>
<td>115</td>
</tr>
</tbody>
</table>

\((L/r)_{\text{max}} = 136.5\) for \(P/P_y = 0.3 \)

(b) Unrestrained columns with moment at one end

Find the maximum end moment \(M_A \) of column A-B.
Given: (1) The pin-ended rolled steel, wide-flange column A-B of Fig. 12 with one end moment.

(2) \(P/P_y = 0.3 \)

(3) \(\sigma_{rc} = 0.3 \sigma_y \)

(4) \(M_p = 1.11 M_y \)

(5) \(L/r = 100 \)

(6) \(\sigma_y = 33 \text{ ksi}, \quad E = 30 \times 10^3 \text{ ksi} \)

Solution: The nomographs used for this case are the ones constructed for one end pinned. A horizontal line is drawn in the lower portions of the appropriate nomograph at the specified slenderness ratio \((L/r = 100)\). Intersections with the curves of the nomograph \((P/P_y = 0.3)\) are carried up to the corresponding nomograph curves in upper portion. By connecting these points in the upper portion one obtains the relationships between the end moment and end rotation at point A for each equilibrium configuration. This is known as the \(M-\Theta\) curve for the given \(P/P_y\).

From Fig. 12

\[
\frac{(M/M_y)_{\text{max}}}{M_y} = 0.712 \quad \text{for} \quad L/r = 100
\]

\[
\Theta_A' = 0.0412
\]

From Eq. (4)
\[\frac{M_A}{M_y} = -\frac{M}{M_y} \quad \text{for } f(\Theta) = 0 \]

\[(M/M_y)_{\text{max}} = 0.712 \text{ for } L/r = 100.\]

Moment-versus-end rotation curves for unrestrained columns, constructed by the method outlined above from the nomographs of Appendix VII-I are given in Appendix VII-II for strong axis bending and weak axis bending. These curves are included here because of their importance in the solution of problems in inelastic frame instability.
IV. SUMMARY

This report is a continuation of Ref. 2, and both this report and Ref. 2 are the condensation of a Ph.D. dissertation. Whereas Ref. 2 contains the theoretical background for the solutions of restrained column problems, the present paper presents the necessary curves and charts in order to solve practical problems. Because it would be required to have a set of charts for each type of material and cross sectional shape, and because each set of charts would require laborious numerical work, the contents of this report are of necessity limited to mild structural steel and to as-rolled wide-flange sections.

The most important part of the work presented herein is given in the Appendices. Appendix VII-I gives nomographs which depict the relationships between the slope, the bending moment and the location of any point on a column deflection curve for strong axis bending.

There are two types of nomographs: One type contains charts for symmetrically arranged column curves (that is, equal end moments and equal end restraints), and the other type is for the case where one end of the column is free of end moment and end restraint. Each nomograph is constructed
278.5

for a specific axial force. One set of curves each is provided for \(P = 0.12 P_y, 0.2 P_y, 0.3 P_y, 0.4 P_y, \) and \(0.6 P_y \).

The use of these nomographs is illustrated in the report by examples of solved problems.

The critical combinations of loading and geometry are obtained for the following problems:

a) Beam-columns having equal end moments and end restraints.

b) Beam-columns with one end pinned.

c) Pinned-end beam-columns having any combination of end moment.

It is shown that rapid solutions can be found by graphical procedures, using the nomographs.

Appendix VII-H gives moment-versus-end rotation curves for pinned-end columns subjected to axial force and (a) equal end moments causing single curvature deformation, (b) end moment only at one end. Curves are given for both strong and weak axis bending. These curves are of importance because they show the complete history of a column, especially in the range where large inelastic rotations may exist. The moment-rotation curves are of importance in solving problems in frame stability.\(^{(6,7)}\)
V. ACKNOWLEDGMENTS

This study is part of the general investigation "Welded Continuous Frames and Their Components" currently being carried out at the Fritz Engineering Laboratory of the Civil Engineering Department of Lehigh University under the general direction of Lynn S. Beedle. The investigation is sponsored jointly by the Welding Research Council and the Department of the Navy, with funds furnished by the American Iron and Steel Institute, American Institute of Steel Construction, Office of Naval Research, Bureau of Ships and Bureau of Yards and Docks.

The authors express special thanks to Theodore V. Galambos for his helpful suggestions.
VI. NOMENCLATURE

A = Cross sectional area of a column (in²)
P = Compressive load (lbs)
E = Young's Modulus (psi)
P_y = \sigma_y A (lbs)
I = Moment of inertia about axis of bending (in⁴)
M = Bending moment (lb-in)
M_p = Plastic bending moment of a cross section (lb-in)
M_y = Bending moment of a cross section at initial yield
L = Column length
e_A, e_B = Eccentricities with which a load is applied to a structure (in)
d = Depth of a column cross section (in)
r = Radius of gyration about axis of bending (in)
s = Length of restraining span (in)
y_m = Maximum amplitude of a column deflection curve (in)
y, y_A, y_B, y_n = Deflections of points on a column deflection curve (in)
\sigma_{rc} = Maximum residual compressive stress (psi)
f_A(\theta), f_B(\theta) = Functions giving restraining moments at column ends (lb-in./radian)
VII. APPENDICES
VII.1 M-Θ-L NOMOGRAPHS
VII.2 M-Θ CURVES
$\frac{M}{M_y}$

$\frac{L}{r} = 40$

$\frac{P}{P_y} = 0.4$

$\sigma_{RC} = 0.3 \sigma_y$

$\sigma_y = 33$ ksi

Strong Axis Bending

$\frac{L}{r} = 60$

$\frac{L}{r} = 80$

$\frac{L}{r} = 100$

$\frac{L}{r} = 120$

$\frac{L}{r} = 140$

$0 \leq \theta \\leq 0.06$
$\frac{M}{M_y}$ vs θ for different values of $\frac{L}{r}$:

- $\frac{L}{r} = 20$
- $\frac{L}{r} = 40$
- $\frac{L}{r} = 60$
- $\frac{L}{r} = 80$
- $\frac{L}{r} = 100$

Parameters:

- $P = 0.6$
- $\sigma_{RC} = 0.3 \sigma_y$
- $\sigma_y = 33$ ksi

Strong Axis Bending
\[\frac{M}{M_y} \]

\[\frac{P}{\bar{P}} \]

\[\frac{\sigma_{tc}}{\sigma_y} = 0.3 \]

\[\sigma_y = 33 \text{ ksi} \]

Strong Axis Bending
$\frac{M}{M_y}$ vs θ'

- $\frac{P}{P_y} = 0.6$
- $\sigma_{RC} = 0.3 \sigma_y$
- $\sigma_y = 33$ ksi

Strong Axis Bending
\[
\frac{M}{M_y} = 0.5
\]
\[
\frac{P}{P_y} = 0.5
\]
\[
\sigma_{rc} = 0.3 \sigma_y
\]
\[
\sigma_y = 33 \text{ ksi}
\]
\[
E = 30 \times 10^3 \text{ ksi}
\]
\[
8W^2 = 31
\]

Weak Axis Bending
\(\frac{P}{P_y} = 0.6 \)

\(\sigma_{rc} = 0.3 \sigma_y \)

\(\sigma_y = 33 \text{ ksi} \)

\(E = 30 \times 10^3 \text{ ksi} \)

\(\beta = 31 \)

Weak Axis Bending
$P = 0.7 P_Y$

$\sigma_{rc} = 0.3 \sigma_Y$

$\sigma_Y = 33$ ksi

$E = 30 \times 10^3$ ksi

$W = 31$

Weak Axis Bending
\[\frac{p}{p_y} = 0.75 \]
\[\sigma_{rc} = 0.3 \sigma_y \]
\[\sigma_y = 33 \text{ ksi} \]
\[E = 30 \times 10^3 \text{ ksi} \]
8 WF 31
Weak Axis Bending
\[
\frac{M}{M_y} = 0.8
\]

\[
P = 0.8 P_y
\]

\[
\sigma_{rc} = 0.3 \sigma_y
\]

\[
\sigma_y = 33 \text{ ksi}
\]

\[
E = 30 \times 10^3 \text{ksi}
\]

\[
8 \text{ W} = 31
\]

Weak Axis Bending

Graph showing \(\frac{M}{M_y}\) vs. \(\theta\) for different values of \(\frac{L}{r}\):
- \(\frac{L}{r} = 40\)
- \(\frac{L}{r} = 50\)
- \(\frac{L}{r} = 60\)
FIG. 1 GENERAL CASE OF BEAM-COLUMN LOADING
FIG. 2 SYMMETRIC BEAM-COLUMN
FIG. 3 MONOGRAPIC REPRESENTATION OF THE COLUMN DEFLECTION CURVES
FIG. 4 PINNED-END BEAM-COLUMN
FIG. 5 MONOGRAPHIC REPRESENTATION OF THE COLUMN DEFLECTION CURVES
FIG. 6 PROBLEM III 1a
Fig. 7 Solution of $III_1 (a)$
FIG. 8 SOLUTION OF III 1 (b)
FIG. 10 SOLUTION OF $\mathbf{III \ 2(b)}$
FIG. II SOLUTION OF III 3 (a)
FIG. 12 SOLUTION OF III 3 (b)
IX. REFERENCES

1. Ojalvo, M.

2. Ojalvo, M.

3. Chwalla, E.

5. Galambos, T. V. and Ketter, R. L.

7. Lu, Le-Wu